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Abstract 

This research note reports the design and implementation of a novel, robust parallel algorithm using GPUs (graphics 
processing units) to generate triangular meshes over complex, unstructured domains or with an unsuitable initial 
discretization. Algorithms have been implemented using the CUDA architecture and compared with their serial 
counterparts for several benchmark case studies. Results demonstrate that the GPU-based parallel algorithms 
developed are several orders of magnitude faster than their serial equivalents.   
 
© 2015 The Authors. Published by Elsevier Ltd. 

Peer-review under responsibility of organizing committee of the 24th International Meshing Roundtable (IMR24). 

Keywords: Graphics Processing Units(GPUs); Mesh Refinement; Parallel Algorithms; Delaunay Triangulation. 
 

 

1. Introduction 

In addition to an accurate representation of the geometry, meshes developed to approximate physical domains 

must also be suitable for analysis as distorted geometric shapes directly impact the accuracy of the solution of any 

governing partial differential equations solved on the domain. To address this problem, several algorithms have been 

proposed in literature which offer theoretical guarantees and are good in practice. Of these, the Delaunay 

Triangulation and its variants have been the most popular because they provide good quality control and have 
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localized effects. However, for highly complex domains, one may need a mesh with a large number of elements to 

satisfy these constraints. This process is very time consuming on a sequential CPU and a need exists to minimize it.  

Researchers have attempted to parallelize these algorithms by using various efficient domain decomposition 

strategies.  During the last few years, however, a class of multi-core processors called GPUs  have become 
prominent because of their improved performance in the floating-point domain. With the advent of CUDA 

(Compute Unified Device Architecture), GPUs are increasingly being used in scientific computing. Literature 

documents scant research on using GPUs for mesh generation or refinement.  

 

The preliminary results presented in this research note focus on developing GPU-based parallel algorithms for 

generating fast, high-quality unstructured triangular meshes.   

2. Overview of Algorithms 

There have been several algorithms developed to construct Delaunay Triangulated meshes over complex 

domains. Most involve refining an existing triangulation by inserting points in the interior of the domain to achieve 

certain quality measures. Ruppert’s Algorithm [1] is popular as it offers theoretical guarantees on quality, gradation 

and size optimality. It is well documented that triangles with very large or very small angles suffer from large error. 

Thus, the first step in this algorithm is to identify them. Two measures are suggested to deal with them. For every 

edge in the mesh, if a point lies interior to its diametral circle it is bisected. This attempts to get rid of short, fat 

triangles and such edges are termed as “encroached segments”. For long, skinny triangles the circumcentre is 

inserted and re-triangulation is carried out instead. Such triangles are termed as “poor triangles”. In order to 

maintain the Delaunay property of the mesh, an “edge flip” step is necessary to ensure that every common edge 

between two triangles must have the sum of the two opposite angles being less than or equal to 1800.   
 

However, every triangular meshing algorithm has one drawback. If the input itself contains small input angles, 

then no meshing algorithm can generate a triangulation without creating any small angles that are not present in the 

input. Hence, for certain domains, every algorithm will consist of some poor quality triangles regardless of the 

termination condition used.  A common reason why this phenomenon is observed is that of “mutual encroachment”, 
which occurs when two sub-segments of unequal length are separated by an angle < 450  and leads to an infinite 

cycle of encroachment. An attempt has been made to correct for this by constructing concentric shells centered at 

the shared vertex with their radii being powers of two, and choosing the best balanced split. [2]  

 

CUDA is a parallel architecture which integrates a high-level language such as C/C++ with the parallel memory 

elements in the GPUs.  CUDA has three types of memory—global, shared and constant. Global memory is 

accessible to all threads, however, it suffers from limited bandwidth leading to very long latencies. Constant 

memory is fast access although read only. The task is broken down into small units – each unit can be assigned to 

one “thread”. Threads are put into “blocks” which can be synchronized and can efficiently share data through a low 

latency (albeit limited quantity) shared memory.   
 
As each thread in CUDA solves one independent problem, the parallelization strategy boils down to finding the 

independent sub-problems in each algorithm and assigning them to one thread. Classification of poor edges or 

triangles or of edges to be flipped is an embarrassingly data parallel problem. However, new points cannot be 

inserted in parallel if they belong to a common region. This leads to the definition of a Maximum Independent Set 

(MIS).  

 

Assume the existence of a point set P, edge set E, and triangle set T.  

For encroached segments, define MIS (ES) = {edges e E such that e is encroached and  e1, e2 MIS (ES) 

there does not exist any triangle t  T to which both e1 and e2 belong} 

For edge flipping, define MIS (EF) = {edges e E such that e violates Delaunay property and e1, e2 MIS 
(EF) there does not exist any triangle tT to which both e1 and e2 belong} 

For poor triangles, first define the cavity set of a triangle = {tT such that t is of “poor quality” and all t1T 
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such that circum center of t lies inside circum circle of t1}. Then, MIS (PT) = {triangles tT such  t1, t2 MIS 
(PT) there does not exist any triangle tT common to both cavity (t1) and cavity (t2)} 

 

We attempted to devise a parallel algorithm to construct the MIS, followed by insertion of points belonging to the 

MIS in parallel. One possibility was to assign weights to each geometric entity (edge/triangle) and if the entity had a 

greater weight than its neighbours then to add it in parallel to the MIS. However, it was observed that this strategy or 

its variants led to the creation of a sub-optimal MIS whose cardinality was much smaller than the optimum.  

 

The complete algorithm proposed and implemented in this work is given below: 

 
Input: P, E, Initial Delaunay Triangulation T(P) 

 

while (an edge is encroached or at least one triangle is poor or average quality   threshold) 

in parallel for each edge eE   

                   check whether e is encroached and if so, label it. 

                  Serially find MIS (ES) of encroached edges es.  

In parallel edges es MIS (ES)  

P= P   {midpoint (es)}  
Update affected triangles and edges.  

Apply Parallel Edge-Flipping. 

If (no edge is encroached) 

In parallel for each triangle  tT 

Check whether t is of “poor quality” and if so, label it.  

Serially find MIS (PT) of poor triangles pt.  

in parallel  triangles pt MIS (PT) 
if (circum center (pt) encroaches an edge eE ) 

mark e as encroached for next iteration.  

Else if (circum center (pt) does not encroach any edge eE ) 

P= P   {circum center (t)}  

Update affected triangles and edges.  

              Apply Parallel Edge-Flipping. 

 

Output: High-quality Delaunay Triangulation T(P) of P, E.  

 

The algorithm for parallel edge flipping is as follows:   

 
Input: P, E, Triangulation T(P) 

 

while (at least one edge is locally non-Delaunay) 

in parallel for each edge eE  

determine t1 and t2   T such that e  t1 && e t2 

calculate α and γ, angles opposite to edge for t1 and t2  

if (α + γ >  1800) 

mark edge for flipping 

serially construct MIS (EF). 

In parallel for each edge  efMIS(EF) 

swap coordinates of points for “flipped” edge and update  t1 and t2 appropriately 

Output: Delaunay Triangulation DT (P)  

 
To deal with mutual encroachment, the Concentric Shell Algorithm was also parallelized. The strategy is as follows:  
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Input: Set of encroached segments ES, P, E,  Triangulation T, MIS (ES) 

In parallel for each encroached segment es =(p,q)MIS (ES) where p, q P 
find e E such that (p,r)=e or (q,r)=e 

if (angle between es & e < 45
0
) 

choose newpoint such that length of one of the two new sub-segments 

formed is 2
i  

where i is an integer and the length of the sub-segments is nearly 

equal 

                              else if (angle between es and all e >= 450) 

                                        newpoint = midpoint (es) 

               P= P   newpoint  

               Update affected triangles & edges. 

Apply Parallel Edge-Flipping. 

 
      A crucial detail in these algorithms is how to optimally use the various types of memory available. The strategy 
implemented loaded the data structures into the global memory. The global data structure was loaded block-wise so 

that it fit into the shared memory, followed by evaluation of whether the edge or triangle was poor. This data was 

then copied back to the global data structure. The MIS was then constructed serially. The global data structures were 

modified dynamically in parallel. In theory, there is data transfer happening and potential overheads are high. In 

practice however this is offset by the speed of access of the shared memory over the global memory.   

3. Implementation and Testing 

The algorithms were implemented on a 2.4 GHz CPU running Linux with 4 GB RAM and the NVIDIA 

TESLA C2070 GPU. Double precision calculations were carried out on the GPU. The algorithms were run for 

several benchmark case studies from literature. The stopping criterion used was either no poor triangles left, or an 

average quality of 0.8. This is expected to give fairly accurate results in engineering applications using techniques 

such as the Finite Element Method (FEM).    

  
The serial and parallel codes were run on 6 typical benchmark case studies. Table 1 and 2 display the results, 

while Fig 1 displays the meshes output by the algorithm with the concentric shell modification.    

     Table 1. Results for the Parallel Algorithm Without Concentric Shell Modification  

  Avg Initial 

Quality 

Initial Triangles Final Triangles Serial (CPU) 

Time (ms) 

Parallel (GPU) 

Time (ms) 

Plate with Hole 0.415 12 4847 6550 24.096 

Airfoil 0.0824 65 22690 145800 15.025 

Africa 0.4251 54 2097 674 1.574 

Guitar 0.5905 152 350 25 0.374 

Key 0.5608 55 460 37 0.736 

Lake Superior 0.3405 322 7734 9700 1.621 

Table 2.  Results for the Parallel Algorithm With Concentric Shell Modification 

  Avg Initial 

Quality 

Initial Triangles Final No of 

Triangles 

Serial(CPU) 

Time (ms) 

Parallel(GPU) 

Time (ms) 

Plate with Hole 0.415 12 3560 2850 3.41 

Airfoil 0.0824 65 20165 99825 12.287 

Africa 0.4251 54 286 25 0.552 

Guitar 0.5905 152 253 12 0.188 

Key 0.5608 55 3459 2025 2.034 

Lake Superior 0.3405 322 8286 12913 1.965 
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Fig 1: Meshes (Top Left: Plate with a Hole, Top Right: Airfoil, Middle Left: Guitar, Middle Right: Key, Bottom Left: Africa, Bottom Right: 

Lake Superior)  

4. Conclusions and Future Directions 

For both algorithms, the parallel times show a very significant speed up over the serial times to generate a 

mesh with the same number of elements. This makes these algorithms an attractive proposition to use for generating 

a large number of elements for certain extremely complicated domains. In general, the Concentric Shell Algorithm 

is observed to have a superior performance for both serial and parallel cases. The high variability in computation 
times for convergence seen in Tables 1 and 2 across various domains is a direct function of the quality of the initial 

triangulation. The initial triangulation is taken to be the Delaunay Triangulation of the boundary points of domain D. 

 

This work will be extended further for domains with extremely small input angles, with provision of an 

automatic handle to control mesh gradation.  
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